Why do some patients withdrawing from alcohol take longer to recover?

Moira Gilmour
Speciality Nurse AOD
Capital Coast Addictions Services CCDHB
Addiction Nurses Symposium
Friday 4th March 2016
Te Papa Porirua
Why the interest

• Dieticians
• Diets for alcohol withdrawal patients
• Significantly long recovery time
• Poor recognition/understanding
• Few studies
• No internationally evidence based guidelines
• Josephus Flavius
 – Jews captured and starved in Roman war

• Japanese POW’s

• Concentration camp victims
Who is at risk

- Patients with
 - Anorexia nervosa
 - Chronic alcoholism
 - Oncology\post operative\elderly
 - Uncontrolled diabetes
 - Morbid obesity with profound weight loss
 - Malabsorptive syndrome
 - Inflammatory bowel disease
 - Chronic pancreatitis
- Long-term users antacids (magnesium and aluminium salts bind phosphate)
- Long-term users of diuretics (loss of electrolytes)
Metabolically what happens

Starvation/Malnutrition → Weight loss (10% body wgt over 2months) 5+ days without nutrition → ↓ insulin ↑ glucagon

↓ insulin ↑ glucagon → Gluconeogenesis

protein catabolism, electrolyte and vit. depletion – salt and water intolerance → Gluconeogenesis

Refeeding → Fluid salt, nutrients CHO major energy source.

↑. Glucose uptake

↑. Utilisation of thiamine

↑ uptake K⁺ Mg²⁺ PO₄²⁻ → Hypophosphatemia

Hypomagnesaemia, Hypokalemia

↓ in electrolytes + fluid retention → Clinical features of refeeding syndrome

Thiamine deficiency Salt and water retention Odema → Clinical features of refeeding syndrome
Clinical manifestations of mineral depletion in refeeding syndrome

<table>
<thead>
<tr>
<th>Mineral/vitamin</th>
<th>Risk level / replacement</th>
<th>Range</th>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium</td>
<td><0.55mmol/L</td>
<td>0.70 -1.10 mmol/L</td>
<td>Cardiac irritability, worsening cardiac arrhythmias, neuromuscular complications, insomnia, hyperactive reflexes, muscle cramps, tetany, seizures</td>
</tr>
<tr>
<td>Phosphate</td>
<td><0.44 mmol/L</td>
<td>0.8 - 1.50 mmol/L</td>
<td>Weakness, respiratory distress, rhabdomyolysis, heart failure, parasthesias, confusion, seizures, thrombocytopenia, leukocyte dysfunction</td>
</tr>
<tr>
<td>Potassium</td>
<td><3.0 mmol/L</td>
<td>3.5 - 5.2 mmol/L</td>
<td>Alternation in electrochemical membrane potential, weakness, arrhythmias, cardiac arrest</td>
</tr>
<tr>
<td>Thiamine</td>
<td>>140 nmol/L</td>
<td><140 nmmol/L</td>
<td>Lactic acidosis, Wernicke encephalopathy (ocular abnormalities, ataxia confusional state, hypothermia, coma)</td>
</tr>
</tbody>
</table>
In total, 52 alcohol dependent patients were admitted for alcohol withdrawal between April and August 2012.

10 excluded (Admitted from ED)

6 excluded Day 1 bloods not obtained

1 readmission

36 included
Method

• Assessment
 – Standard history and examination
 – Weight: Height; + BMI
 – Nutritional history
 – Day 1 and Day 3 Bloods
 • Phosphate
 • Magnesium
 • LFT’s
Patient demographics

<table>
<thead>
<tr>
<th>Number</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age at admission (years)</td>
<td>48.4</td>
</tr>
<tr>
<td>Standard drinks (units per week)</td>
<td>27.4</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>16 (44.4)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>20 (55.6)</td>
</tr>
<tr>
<td>Taking multivitamins (%)</td>
<td>16 (44.4)</td>
</tr>
<tr>
<td>Loose bowel motions (%)</td>
<td>6 (16.6)</td>
</tr>
<tr>
<td>Chronic pancreatitis (%)</td>
<td>1 (2.8)</td>
</tr>
<tr>
<td>On diuretic medications (%)</td>
<td>1 (2.8)</td>
</tr>
<tr>
<td>On antipsychotic medication (%)</td>
<td>5 (13.9)</td>
</tr>
<tr>
<td>On antidepressant medication (%)</td>
<td>18 (50)</td>
</tr>
<tr>
<td>Previous gastric bypass (%)</td>
<td>3 (8.3)</td>
</tr>
</tbody>
</table>
BLOOD chemistry

Day 1-3

• No statistical difference in mean serum levels of:
 – Potassium
 – Phosphate
 – Magnesium

• Statistically significant difference of mean adjusted calcium; 2.34 mmol/L TO 2.4 mmol/L
Blood Chemistry

DAY 1 (36 patients)

• 3 serum low potassium 3.3 - 3.1 (3.5 – 4.9 mmol/L)
• 5 low serum phosphate 0.56 lowest (0.95 – 1.60 mmol/L)
• 16 low serum magnesium 0.54 lowest (0.76 – 0.99 mmol/L)

DAY 3

• 0 serum potassium below reference range
• 2 low serum phosphate 0.79 lowest
• 20 low serum magnesium 0.58 lowest
Blood Chemistry

Thiamine levels
29/36 thiamine levels prior to supplementation
Ref range: 140nmol/L
Three patients low thiamine
Values 97 nmol/L
 110 nmol/L
 129 nmol/L
Magnesium

- Cofactor more than 300 enzyme-catalysed reaction
- Magnesium and alcohol
- Magnesium and thiamine
- Direct effect on sodium/potassium/calcium
- Cardiac muscle cell function
 - Arrhythmia's (SVT)
Outcomes

- First prospective study screening for refeeding syndrome
- No patients admitted developed refeeding syndrome
- Thiamine
- Planned vs unplanned admissions
- Screening
- Definition of refeeding
Prevention

- Early recognition in high risk patients
- Screening for reduced food intake
- Identification/screening nutritional status
- Vitamin supplementation
- Consultation
Thank-you

- The individual patients who participated in this study
- Dr Geoffrey Robinson
- Dr Stephanie Manning
- Colleagues at CADS CCDHB Wellington NZ
REFERENCES

Mehanna HM, Moledina J, Travis J. Refeeding Syndrome: What it is and how to present and treat it. BMJ 2008; 336:1495-8

